UNIVERSAL BOUNDS FOR GLOBAL SOLUTIONS
OF NONLINEAR PARABOLIC EQUATIONS

© MaRrek FILA

Bratislava, Slovakia; Trieste, Italy

1. Introduction.

In this survey we consider parabolic problems for which blow-up in finite time occurs
for some initial data but global positive solutions may also exist. We present results on
universal L* -bounds for global positive solutions. These bounds will be of the form

u(z,t) < C(7), zeN, t>17>0,

where C(7) > 0 does not depend on initial data.

The first bound of this kind (see Section 2) was established in [FSW] for a semilinear
parabolic equation on a bounded domain using a weighted Lebesgue space approach.
An improvement of the result from [FSW] was given in [Q2] (see Section 3) for space-
dimensions two and three. The method of [Q2] relies on scaling, energy and Hardy’s
inequality. Universal bounds for an equation in selfsimilar variables (in the whole space
R™) were derived in [MS] (see Section 4) employing convolution Lebesgue spaces. For a
degenerate parabolic equation, universal bounds were obtained in [S] (see Section 5) by
energy estimates, interpolation inequalities and regularizing properties. The smoothing
effect, scaling and energy estimates are used in [QS1] to establish universal bounds
for the heat equation with nonlinear boundary conditions (see Section 6). The very
interesting question of the blow-up rate of the constant C(7) as 7 — 0 has been
addressed in [QS2] (see Section 7).

2. Semilinear equation on a bounded domain.

Consider the problem

ug = Au + [ulP7lu, z€Q, t>0,
u(z,t) =0, z€0Q, t>0, (2.1)
u(z,0) = uo(z), = € 0,

with p> 1 and ug € L®(Q), Q is a bounded domain in RV .

The study of boundedness of global solutions of this problem was initiated in [NST].
It was shown there that if Q is convex, ug > 0 and p < (N +2)/N then every global
solution is uniformly bounded by a constant which depends on up in a complicated
way. (In particular, this constant depends on the shape of u(-,to) near 0Q for some
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to >0). Let p, = (N +2)/(N —2) for N>2 (ps =00 if N <2). Ni, Sacks and
Tavantzis also proved in [NST] that global unbounded weak solutions exist for p > p;,
N 2.

Slightly later, Cazenave and Lions [CL] derived a uniform a priori bound (depending
on supg |ug|) for global solutions if (3N —4)p < (3N +8) and they proved that global
solutions are bounded (without giving any information on the bound) when p < p;. An
a priori estimate for positive global sclutions was established by Giga [G] when p < p; .
More recently, Quittner [Ql] has shown that an a priori bound holds for all global
solutions provided p < p, . The a priori bounds in [G] and [Q1] depend on supg, |ug| .

The question whether the global unbounded weak solutions found in [NST] are clas-
sical for all ¢ > 0 was answered by Galaktionov and Vazquez [GV] in the radial case
on a ball. The answer is positive if p = p, and negative for p; < p (< 1+ 6/(N — 10)
if N >10), uo radially decreasing. In fact, global classical solutions are bounded in
the latter case.

It is easy to see that an a priori bound of the form

u(':t) S C(supuo,p,ﬂ], t Z 0:
Q

cannot hold for global positive solutions of (2.1) when p > p, and Q is starshaped.
Indeed, such an estimate would imply the existence of a positive steady state.

One of the main aims of [FSW] was to establish an a priori bound for global solutions
of (2.1) which is universal, that is, independent of ug:

THEOREM 2.1. Assume p > 1, (N—-1)p < N+ 1 and let 7 > 0. There ezists a
constant C(Q,p,7) > 0, independent of u, such that for all nonnegative global solutions
u of (2.1), it holds
supu(-,t) < C(Q,p,7)  for t> T (2.2)
Q

In other words, Theorem 2.1 shows that there exists a global absorbing bounded set
(after a positive time) for all global nonnegative trajectories of (2.1).

It is clear that (2.2) cannot hold for 7 = 0 since there are initial data uo arbitrarily
large in the L°° -norm and such that the corresponding solutions are global. It is also
obvious that there is no universal bound like (2.2) for global solutions which change sign
because sign-changing stationary solutions can be arbitrarily large in the L°° -norm.

To prove (2.2) we use the smoothing effect for solutions of (2.1) in weighted Lebesgue
spaces. Next we briefly describe both linear and local nonlinear theories in these spaces.

Let Q be any bounded domain of RY. We denote by (et )¢>o the Dirichlet heat
semigroup on L?(Q2) . We denote by A; > 0 the first eigenvalue of —A in H3 () and
by ¢1 = pi(z) > 0 the corresponding eigenfunction, normalized by [,¢; = 1. We
also define the function §(z) = dist(z,0Q).

For any Borel measure u on (1, the spaces LI(f2) are defined in the usual way
for 1 < g < oo. In particular, we will consider the spaces L% () and Li(Q),
corresponding respectively to pu = p;(z)dz and p = é(z)dz .

It is clear that LZ () = L§°(Vmega) = L*°(). For 1 < g < oo, the spaces LI, (2)
and L}(Q), are endowed respectively with the norms

[6las = [ 18)1es(2)dz) "
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I6lls = ([ 16(@06(e)dz) ",

Since ¢; and ¢ are bounded functions on 2, we have LY (Q) C L, () and L(Q) C
Li(Q) forall 1<g¢g< oco.
When Q has a smooth, say, C? boundary, it is well-known that there exist constants
¢1, ¢2 > 0 such that
a8() < pi(2) < e2d(z), e

It then follows that LY () = L}(Q2) and that the two norms are equivalent.
The main result in the linear theory developped in [FSW] is the following theorem.

THEOREM 2.2. ([FSW]) Let 1 < ¢g<r < o0 and a = %(% - %) There exists
C =C(22) >0 such that, for all ¢ € LE(Q), it holds

e ¢llre < Ct™llgss, t>0.

The estimate from Theorem 2.2 is optimal.

THEOREM 2.3. ([FSW]) Let 1 < ¢ < r < oo and a = (2 - 1) Let Q be

a smoothly bounded domain, and assume that there ezists zo € OQ such that O
coincides locally around zo with a hyperplane. Then for all € > 0, there ezxist ¢ €

Li(Q) and C, 7 >0, such that

le2d|lrs > Ct~F, O<t<

Next we present the main results of the local nonlinear theory. In what follows, we
assume that Q is a (C?) smooth bounded domain of RY , and that
(N+1)(p—1)

c = N 1.
q, 5 P

The problem (2.1) will be studied under the form of the (formally equivalent) integral
equation

u(t) = e®ug -+-/0 e(t“’m(|u(s)|p'1u(s)) ds. (2.3)

THEOREM 2.4. ([FSW]) Let ¢ > g, and ¢> 1.

(1) For every M > 0, there exist T = T(M) > 0 and K = K(M) > 0 such that if
ug € LY(R) with |luollq,s < M, then there is a solution u € C([0,T); L)) of (2.3)
satisfying

we C((0,THL}Q), ¢<r <oo,

E-D|

t @l <K, 0<t<T, g<r<oo. (2.4)

This solution is unique in the class
C([0,T); LE(R)) N Lig. ((0,T); LE*(R)).
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(1) If the mazimal existence time T* = T*(ug) of the solution is finite, then

lim ||u(t)|[rs =00, ¢ <7< co.
t—T*

More precisely, we have the lower estimates

lw(®)llns > C(T* —t) 371,  0<t<T', g<r< oo

THEOREM 2.5. ([FSW]) Let ¢ =g, and ¢ > 1.
(i) For every uo € Li(Q), there exist T = T(uo) >0, K = K(ug) > 0 and a solution
u € C([0,T); L{(Q)) of (2.3) satisfying
uw€ C((0,T;; L5(%), g<r< oo,

Nil(_l.
2 ‘g

t= G |ut)ls <K, 0<t<T, g<r< oo

This solution is unique in the class
C([0,T]; L5(9)) N Li. ((0, T); L5(€2)),

where 1<r/p<g<r.
(i) If the mazimal ezistence time T*(ug) of the solution is finite, then

im [|u(t)|lrs =00, ¢<r<oo.
t—=T*

(45i) If |luollq.s is sufficiently small, then T*(uo) = oo, and lims—eo [|u(t)|lq.s = 0.

The following result shows that the restriction g > ¢, is actually optimal for local
existence, at least for some domains (0.

THEOREM 2.6. ([FSW]) Let 1 < g <gq. (hence p>1+2/(N +1)), and assume that
Q satisfies the assumptions of Theorem 2.2. Then there exzist initial data wo € LY,
ug > 0, such that no local solution u of (2.3) ezists with w > 0.

Proof of Theorem 2.1. In what follows, C' denotes various positive constants depending
only on the indicated arguments.

We start from the classical eigenfunction’s estimate of Kaplan [K|. Multiplying the
first equation in (2.1) by ¢; and integrating by parts, we obtain

d P
g7 nu(t)tpl +)\1f9u(t)gol =/ﬂu (t)ep1. (2.5)

By Jensen’s inequality, it follows that

%/ﬂu(t)m > (Lu(t)¢1)p”A1/;lu(t)¢l-
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Since u exists globally, one then necessarily has
— 1/(p—1)
[ wlther < cl@up) =P, e 20 (2.6)
Q

Now integrating (2.5) in time over (0,7/2), and using (2.6), we obtain

/ fup% =/ (7/2)p1 - ‘/U(U)‘m*‘)\l fdg/;)“(t)%

< C0(Q,p,7) = (1 + \r/2A 7.

In particular, there exists some 7 € (0,7/2) such that

/upTl (Ipl—. / fu”:,o1<C P T )
Q

Hu(‘rl)]ip-é i O(Q,p,?’)-
Since by assumption p < (N + 1)/(N — 1), p is thus supercritical, that is, p >
m . We then deduce from the smoothing property (2.4) that

l[u(m2)lle < C(2,p,7),

or in other words:

for some 75 € (11,7). Since (N +1)/(N—1) < (N +2)/(N —2), it is known from the
result of Giga [G] (see also [Q1]) that |[u(t)|| is bounded on [r2,00) by a constant
depending only on |[u(72)||« (and on © and p). The conclusion follows. 0

3. Semilinear equation on a bounded domain, N < 3.

THEOREM 3.1. ([Q2]) Let N < 3, p < ps and 7 > 0. Then there ezists C =
C(Q,p,7) >0 such that any global positive solution u of (2.1) satisfies

supu(+,t) < C(Q,p,7) for. t2> 7.
o

Sketch of the proof. Due to the a priori bound from [G] (or [Q1]), it is sufficient to
show that for any 7 > 0 thereis C = C(Q,p,7) > 0 such that for any global positive
solution u it holds that |[u(t)|w1.2(q) < C for some t € [0,7].

Suppose the contrary. Then there exists a sequence u; of global positive solutions
and 7 > 0 such that |ju(t)|lw2(q) >k for any t € [0,7]. For ¢ € (0,7) denote

M = mg-xuk(fk) = up(zk, i), vy = Mg PV

1
b= ==(Q - m); By ={z € M : |2| < R},
1

wk(:c) = Euk(mk + vz, tk)

wi(z) = M, Plu k)e(Tk + vez,tr).
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Using energy estimates and Hardy’s inequality it is possible to show that there is a
sequence {t;} C (0,7) such that

/ [@r(z)|’dz - 0 as k — oo (3.1)
Bk

R

for any R > 0. The function w; satisfies 0 < wi; <1 = wi(0) and
Awy + wi, — Wy, =0, z € Q,
wyg =0, z € 0.

Since {w;} is uniformly Hélder continuous on B} s and (3.1) holds (the assumption

N < 3 was used to prove these two facts), one can pass to the limit and obtain a
positive solution of one of the following two problems:

Aw+wP=0 in RV,
Aw+w?=0 in RY, w=0 on 9RY.

But it is well known that neither of these problems has a positive solution if p < p,. O
It is an open problem whether (2.2) holds for global positive solutions of (2.1) if
p<ps and N > 3.
4. Semilinear equation in R” in backward selfsimilar variables.

Consider now the problem

ug— Au = |ulf~lu, zeRN, t>0,
{ t uP™ (4.1)

"U,(:E, 0) = ug(z), LS RNs

with p > 1. For a € RN and T > 0 we rescale the solution u which exists for
t €[0,T) by setting

y= "’T__“t ,  s=—log(T —t),
wa(y,s) = (T — )77 u(z, ).
Then w = w, is defined in R¥ x (sp,00), 89 = —log T, and it satisfies
wE= Aw — 2y - Vo + [w[P~lw — -=w, yERY, 5> s,
{ w(y,s0) = Tﬁuo(a +VTy), yeRN. (42)

Boundedness of global solutions of (4.2) is then equivalent to the boundedness of the
function (T —t) =T supgw |u(-,t)| . This fact was employed in [GK] in order to obtain
results on the blow-up rate of u by showing that global solutions of (4.2) are bounded.
The next theorem says that under some assumptions one has a universal bound away
from s = sg.
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THEOREM 4.1. ([MS]) Let 7 > 0, uo € L=¥(RY), uo > 0 and assume one of the
following:
: 2

(i) p<1l+ N ‘ ‘

(11) wo is radially symmetric and nonincreasing in r = |z| and

(N-2)p< N +2 if N <3,
(N-2)p< N if N>3.
Then there is C = C(7,p,N) > 0 such that for any global solution w of (4.2) it holds

that
w(,s) <C for s> s+

We present the main idea of the proof in the case (i). Multiplying the first equation
in (4.2) by

and integrating we obtain
e e
pru(s) = [ wwo)pw)dy S (-1, 520 (43)

This leads to the study of (4.2) in convolution Lebesgue spaces

aERN

L. = {f € LL(RY) < 1515, = (e [ 1) plo - z)dw)% < oo} .

The result ia the case (i) is a direct consequence of the bound (4.3) and of the smoothing
property of (4.2) in these spaces. We remark that such a smoothing property does not
hold in weighted Lebesgue spaces L.

5. Degenerate equation on a bounded domain.

In this section we discuss a universal bound for global weak solutions of the problem

uy=Aum™+uP, z€Q, t>0,
u(z,t) =0, z€dQ, t>0, (5.1)
u(z,0) = uo(z) >0, z€Q,

with 1 <m < p and uJ* € L®(Q) N W;*(0), O is a bounded domain in RY .

THEOREM 5.1. ([S]) Assume that p < m(1+ %) if N > 1. Then for any 7 > 0
there is C' = C(7,Q,p,m) such that any global solution of (5.1) satisfies

u(-,t) < C for t>T.
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To prove this result, first an a priori bound which depends on initial data is derived
using energy and interpolation inequalities in a similar spirit as in [CL]. This a priori

bound holds for
10m + 2

3N —4

Kaplan’s eigenfunction method and smoothing properties of (5.1) yield then the univer-
sal bound.

it N 1.

p<m+

6. Linear equation with a nonlinear boundary condition.

In [QS1], the following problem is considered:

ur=0Du—u, €, t>0,
ou
ke
u(z,0) = uo(z) > 0, z € Q,

uP, 2€d, t>0, (6.1)

where p>1 and Q is a bounded domain in R¥.

THEOREM 6.1. ([QS1]) Assume that either p< 1+ 7 or (N—-2)p< N, N <3.
Then for every T > 0 there ezists C = C(Q,p,T) such that any global solution u of
(6.1) satisfies :

ulad) 20 .. Jor. 1 Zom

Again, an a priori bound which depends on supg ug is established first in [QS1].
This is achieved by a scaling argument in the spirit of [G]. The next step is a universal
bound in L}(2) for ¢ > 0. The result in the case p < 1+ 1/N follows then from an
L' — L™ —estimate. A modification of the method from [Q2] (cf. Section 3) yields the
conclusion when (N —2)p< N, N <3.

7. Blow-up rate of the universal constant.

In this final section we discuss the initial blow-up rate or, in other words, the behavior
of the universal constant C as 7 — 0.

THEOREM 7.1. ([B], [MS]) Assume p>1, 0<T < oo and let u be a positive solution

of
uwy=Au+v?, 0<t<T, ze€R",

with u(-,t) € L®(RYN) for 0 <t <T. Assume further that one of the following holds:
(i) (N-1)’p < N(N +2),
(i) u(-,t) is radially symmetric and nonincreasing in v = |z| and (N —2)p < N +2,
N<3.
Then there is C = C(p,N) > 0 such that

P
u(z,t) <Ct™ 71, zeRN 0<it< =
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Under the assumption (i), this result was established in [B] using Bernstein type
gradient estimates, Aronson-Serrin Harnack inequalities and multiplier arguments. The
result in [B] is in fact local in the sense that

I
u(m,t)SCt'ﬁ? zTEw, 0<t< 3

holds for positive solutions of
uy=Au+uPl, 0<t<T, ze€f

where w CC @ C RM. The second part of Theorem 7.1 has been proved in [MS] by
modifying the arguments from [Q2] (see Section 3).

THEOREM 7.2. ([QS2]) Let the assumptions of Theorem 2.1 or Theorem 3.1 be satisfied.
Then there are ¢ = ¢(Q,p) > 0 and a = a(p, N) > 0 such that the constant C in
Theorem 2.1 or 3.1 is of the form C(Q,p,7) = cmax(r~%,1). If p< 1+ NL,H then
one can take a = (N +1)/2.

THEOREM 7.3. ([QS2]) Assume that (N —2)p < N or p<ps, N=3. Let u be a
global solution of
uy=Aut+uf—u, z€Q, t>0,

%=U, zed, t>0,
v

u(z,0) = up(z) >0, ze€1,

with p > 1 and up € L™(), Q is a bounded domain in RN . Then there are
c=1¢(Q,p) >0 and a =a(p,N) >0 such that u(-,t) < cmax(t~*,1). If p< 1+ Z
then one can choose a = N/2.
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